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ABSTRACT

The mode-matching technique is employed for computing the propagation constants and field distributions of

an inverted strip dielectric waveguide. The results derived in this manner are further improved by using vari-

ational formulas expressly designed for open dielectric waveguides. Illustrative numerical results are presented

and compared with experimental measurements as well as those based on approximate methods found in the literature.

Introduction

Recent interest in the 30–300 GHZ range, which
has remained relatively unexplored hitherto, has led
to the investigation of low–loss, low–cost dielectric

1-4
waveguide designs suitable for integrated circuit

applications in this frequency range.

In order to develop reliable designs for uniform

dielectric guides, as well as for active and passive

components constructed from these waveguides, it is
extremely important to have the capability of theoret-
ically predicting the performance of these circuit

elements and transmission media.

A search through the literature on optical and
quasi–optical dielectric waveguides reveals, however,

that the progress in this direction has been rather

limited and the most commonly employed approach appears
to be based on what is called the “effective dielectric

1-4
constant” method . An alternate approach called the
“effective permeability” method has also been devel-

5
oped ; however, both of these techniques are based on

certain approximations that are neither easily justi-
fied nor always satisfied. Furthermore, they do not

provide complete field distributions. Recently, an
exact formulation of the problem for dielectric image
guides has been developed which is based on the expan–

sion of the field in each subregion of the guide cross-
section into a complete set of functions, and the

6
consequent matching at the boundaries . The numerical
results obtained from this method seem to be in good

agreement with the experimental results.

In this paper, a rather similar approach baaed on

the mode-mat thing technique 7 is used for a more ccnnplete
analysis of the open, planar, dielectric waveguide

problem, specifically, homogeneous inverted strip guide

(HIS). The method is quite general, and is useful even

at optical frequencies. It appears that a one–mode

approximation of the method presented here boils down
to the “effective dielectric constant” approach.

The propagation constant obtained from the mode-
matching technique is further improved by employing
variational expressions which are modified for the
present analysis.

Mode Matching

We consider the waveguide geometry in Fig. 1 which

shows the cross-section of the homogeneous inverted
strip guide (HIS). We investigate the problem of

computing the propagation characteristics of both the
fundamental and high-order modes in such waveguides.

Numerical results are presented for the propagation
constants as well as field distributions for various
modes calculated at a frequency of 79.4 GHz. The
method itself is quite general, and is useful even at
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Figure 1. Cross-section of homogeneous inverted
strip guide,

optical frequencies. The major steps in the analysia
are given:

1. Invoke the symmetry of the configuration and insert

a magnetic wall at x=O for modes symmetric with respect
to y. For antisymmetric modes, the magnetic wall ia

replaced by an electric wall.

2. Insert a top shield at y=h+d+b. Since, for guided
modes, the fields are well-confined in both the x and
y directions, we argue that these fields will be dis-
turbed little if we insert a top shield sufficiently
far above the guide. Insertion of the top shield trans-
forms the original open-region problem into an equiva-
lent closed-region problem, which is more easily
manageable.

Express the field in the regions O ~ x < w- and
:4 —

< x in terms of a combination of TE and TM modes

(wi~h respect to the y-direction) whose coefficients
are as yet unknown.

4. Impose the matching conditions for the transverse
fields at the interface X=W.

563



5. Obtain the matrix eigenvalue equation using the

moment method applied to the relationship derived in
step 4.

6. Extract determinantal equation from the matrix

eigenvalue equation. The roota of the determinantal
equation yield the propagation constants.

7. Derive the corresponding modal field distributions

for the different eigenvalues.

Before proceeding with the description of the
numerical results, we mention an important theoretical
result derived from this analysis that is useful in
its own right. We have been able to demonstrate that
the effective dielectric and permeability approaches
fall out of our analysis if we restrict ourselves to a

single-mode approximation. Thus , the present method,
which is a generalization of existing approaches,

enables us to derive higher-order approximations in a

systematic manner.

Variational Improvement

The mode-matching results for the propagation

constants can be further improved via the use of
variational techniques. The field distribution is,

in general, discontinuous across the interface of
material discontinuity, due to the approximation
introduced by the use of a finite number of modes in

the process of mat@hing the fields across the inter–

face. The presence of such discontinuities requires

that the conventional variational formulas for the
8,9

propagation constant be suitably modified. The
modified formulas are then employed to obtain the

propagation constants with improved accuracy.

Numerical Results

We present some representative results based on

the analytical procedures already described. All of

the results pertain to the homogeneous inverted strip
guide of Figure 1, and are computed for 79.4 GHz to
coincide with the experimental measurements.

Table I shows the convergence of the results for

the propagation constant with the increase in the

TABLE I

PROPAGATION CONSTANT k (mm-l) OF THE GUIDED MODES IN
HOMOGENEOUS INVERTED sfRIp GUIDE (FIG. 1) AT FRRQUENCX

79.4 GHz

(Number of Terms)
1 TE 3 TE 5 TE 7 TE Effec- Experi-

NOd e
1 TM 3TM 5TM 7TM tive E men t

~Y
11 2.9718 2.9892 2.9872 2.9873 2.9906 3.0

HY
11

2.7341 2.6210 2.7295 2.7203 2.7595 -

EY
21

2.3646 2.3871 2.3910 2.3908 2.4070

number of TEY and TMY modes retained in the mode–match-
ing calculations. The results obtained from the
“effective dielectric constant approach,” which is
equivalent to a single-mode approximation, and the
measured values of k= are also included in the table.

It should be mentioned that, unlike the “effective
dielectric constant” approach, the mode-matching

method produces accurate results for the field distri-

bution of the dominant mode as well as the field

distributions and propagation constants for higher-
order modes.

Figures 2-5 show the comparison of the tangential

field components of the E~l guide mode at X=w- and
+

X=w . The Hy and Hz fields are extremely well–matched

wnen 7 TE and 7 TM modes are used for the field expan-

+
sion in the two regions, O < x < W- and w ~ x. How-
ever, the E field match imp;ove= only sligh=ly as the
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Figure 2. Plot of \Hy] field of the Ey mode at the
+11

interface for X=W- and X=W ,
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Figure 3. Plot of IHZI field of the Ey mode at the
+11

interface for X=W- and X=W .
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Figure 4. Plot of IEZI field of the E{l mode at the
+

interface X=W- and X=W .
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number of modes used is increased. The matching of E-- ,,:![-- r .- ,---- ,—.- r..- ,-- ,- -- --
I

is more difficult since it is a continuous function y
of y at X=w– and y=h, but a discontinuous function of

y at X=w+ and y=h. However, except for this difficulty
at X=W, matching process for the Ey field converges

rapidly at other places as evident from Figures 6 and 7,

Figure 6 shows the distribution of Dy at the x=O plane.

The field is extremely small. at the top shield located

at y=h+d+b, thus justifying our original assumption

that the perturbation introduced by the perfect
electric conductor placed at the top of the guide is

negligible. Figure 7 shows the distribution of Ey at

the y=h+d+O+ plane. It is evident from this diagram

that most of the energy carried by a guided wave is
confined within the strip region.

The field distributions calculated via the mode–

matching method are used in the modified variational
formulas for the calculation of propagation constants.

Some representative results using mixed–field varia-
tional formulas are presented in Table 11 and compared

with the results obtained directly from the mode–
matching calculation.
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Figure 6. Plot of IDYI field of the E~l mode in verti-

cal direction for x=O. O.

y.h+ ’i.”

–---ITE 17M

—- 31[- 3Tb3

----7, E 7,M

‘\
\,‘!
\ ‘,
\ \\

“i, I

\ \\

\\

\ \,

‘\ 1,

‘, ,

‘\
1
\
\
\
\
!

.,OLL-L-.,-..L.-L .J_, _.l_:J1._._._ .
“o 0, 0, ,* ,6 Z(J %. x, mm

Figure 7. plot of 1~1 field of the E~lmode in trans-
verse direction for y=h+d+O.

TABLE 11. PROPAGATION CONSTANT kz(mm-l) CALCULATED VIA

MIKED-FIELD VARIATIONAL FORMULA. COMPARISON IS MADE

WITH MODE-MATCHING RESULTS (TABLE I).

(Number of Terms)

Mode Method
1 TE 3 12z 5 TE

. lTM 3TM 5TM

EY Variational formula 2.9887 2.9899

11 Mode Matching 2.9718 2.9892 2.9872

~Y Variational formul~ 2.7403 2.6138 –-
11 Mode Matching 2.7341 2.6210 2.7203

~Y Variational formula 2.3949 2.3789 --
21 Mode Matching 2.3646 2.3871 2.3910
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